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ABSTRACT bevel gear-tooth surface coordinates and a three- IN-cTED
dimensional model for finite element analysis.

Ar. analytical method has been developed Accomplishment of this task requires a basic in-
to determine gear tooth surface coordinates of derstanding of the gear manufacturing proess.
face-milled spiral bevel gears. The method com- which is described herein by use of differential
bines the basic gear design parameters with the geometry tec.hniques Ill. Both the manufactur:ng
kinematical aspects for spiral bevel gear manu- machine settings and the basic gear design data
facturing. A computer-program was developed to were used in a numerical analysis procedure that
calculate the surface coordinates. From this data yielded the tooth surface coordinates. After the
a three-dimensional model for finite element ana- tooth surfaces (drive and coast sides) were de-
lysis can be determined. Development of the scribed, a three-dimensional model for the tooth
modeling method and an example case are presented. was assembled. A omputer program was developed

to automate the calculation of the tooth surface
INTRODUCTION coordinates. and hence, the coordinate for the

gear-tooth three-dimensional finite element mouel.
Spiral bevel gears are currently used in all The basic development of the analytical model is

helicopter power transmission systems. This type explained, and an example of the finite element
of gear is required to turn the corner from a method is presented.
horizontal engine to the vertical rotor shaft.
These gears carry large loads and operate at high DETERMINATION OF TOOTH SURFACE COORDINATES
rotational speeds. Recent research has focused on
understanding many aspects of spiral bevel gear The spiral gear machining process described
operation, including gear geometry [1-121, gear in this paper is that of the face-milled type.
dynamics (13-151, lubrication (161, stress analy- Spiral bevel gears manufactured in this way are
sis and measurement (17-211, misalignment (22.231. used extensively in aerospace power transmissions
and coordinate measurements [24.251, as well as (i.e., helicopter mainitail rotor transmissions)
other areas. to transmit power between horizontal gas turbine

engines and the vertical rotor shaft. Because
Research in gear geometry has concentrated on spiral bevel gears can accommodate various shaft

understanding the meshing action of spiral bevel orientations, they allow greater freedom for over-
gears f8-111. This meshing action often results all aircraft layout.
in much vibration and noise due to an inherent
lack of conjugation. Vibration studies [261 have In the following sections the method of de-
shown that in the frequency spectrum of an entire termining gear-tooth surface coordinates will be
heli.opter transmission, the highest response can described. The manufacturing process must first
be that from the spiral bevel gear mesh. There- be understood and then analytically described.
fore if noise reduction techniques are to be im- Equations must be developed that relate machine
plcmented effectively, the meshing action of and workpiece motions and settings with the basic
spiral bevel gears must be understood. gear design data. The simultaneous solution of

these equations must be done numerically since no

Also, investigators f18.191 have found that closed-form solution exists. A description of
typical design stress indices for spiral bevel this procedure follows.
gears can be significantly different from those
measured experimentally. In addition to making Gear Manufacture
the design process one of trial and error (forcing Spiral bevel gears are manufactured on a
one to rely on past experience), this inconsis- machine like the one shown in Fig. 1, This
tency makes extrapolating over a wide range of machine cuts away the material between the concave
sizes difficult, and an overly conservative design and convex tooth surfaces of adjacent teeth simul-
can result. taneously. The machining process is better illus-

trated in Fig. 2. The head cutter (holding the
The objective of the research reported herein cutting blades or the grinding wheel) rotates

was to develop a method for calculating spiral about its own axis at the proper cutting speed,
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Figure 1.-Machine used for spiral bevel gear tooth surface generation. Front view

Figure 2.-Orjenta:ion of workpiece to generation mac.',ery.

about its own axis at the proper cutting speed, allow rotation and translation of vectors sim-v
independent of the cradle or workpiece rotation. by muliuplying the matrix trarsformations. The
The head cutter is connected to the cradle through method used for the coordina:e t:ransformation can
an eccentric that allows adjustment of the axial be found in Refs. 1. 5. 8 to 11. and 27.
distance between the cutter center and cradle

(machine) center, and adjustment of the angular To begin the process we start witn the head
position between the two axes to provide the de- cutter (Fig. (3)). In this report it is assumied
sired mean spiral angle. The cradle and workpiece that the cutters are straight-sided. The para-
are connected through a system of gears and meters u and B determine the location of a
shafts, which controls the ratio of rotational
motion between the two (ratio of roll). For
cutting, the ratio is constant, but for grinding, Xc

it is a variable. xC

A
Comruter numerical controlled (CNC) versions ,

of the-cutting and grinding manufacturing pro-
cesses are currently being developed. The basic
kinematics, however, are still maintained for the

generation process; this is accomplished by the 0, ZC
CNC machinery duplicating the generating motion Vb - 8through point-to-point control of the machining

k mt hp i t t o inter con trol lo ma ciin ng fo he4surface and location of the workpiece. Insde blade (convex side):

Coordinate Transformations, u.IBI
The surface of a generated gear is an •

envelope to the family of surfaces of the head xc
cutter. In simple terms this means that the 0,
points on the generated tooth surface are points

of tangency to the cutter surface during manu- - -
facture. The conditions necessary for envelope Ko0 >'"
existence are given kinematically by the equation Yc ,B X- C

of meshing. This equation can be stated as fol- 0 0
lows: the normal of the generating surface must Yc /
be perpendicular to the relative velocity between
the cutter and the gear-tooth surface at the point

in question j1.
V Vab A

The coordinate transformation procedure that ;/
will now be described is required to locate any
point from the head cutter into a coordinate Outside blade (concave side);
system rigidly attached to the gear being manu- u
factured. Homogeneous coordinates are used to Figure 3-Head cutler cone surfaces.
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current point -in the cutter coordinate system S . xP xc
Angles fib and ob are the blades that cut the rse X/
convex and concave sides of the gear tooth respec-
tively. Thus r-- is given by the following
equation: W(c)

rcot -u Cos - _
- u sinl sinO (1) 0

0. 
0

'.w •Om- 10
u sink-0cos 9

Once we have -C we then transform from one- coor-
dinate system to the next for the coordinate sys- za.z.tems as shown in Figs. (4) and (5) J2I.. Top view

Using matrix transformations we can determine
the coordinates in S. of a point on the generat-
ing surface by:

- (2) /)

Yp. Ya. Yw YM O0

Here (M. describes -the required homogeneous[t iiN, w
coordinate transfornation from system "j" to s/ 2
system "i". Therefore Eq. (2) describes the 0 O' z"
location-of a point in the gear fixed coordinate E I 2Wsystem based on machine settings L.. Ea. q. s. r,
t. and gear design information p9 and- 6. At L
this point the machine settings and the gear
design values -are known. Parameters u.- . and Frontview
Oc are the unknown variables that are solved for FigureS.-Topardftontvievof ighthandgearsurace enecatcn
numerically. (oc . 0 shown here).

Tooth Surface Coordinate Solution Procedure
In order to solve for the coordinates of a items must be used simultaneously: the trans-

spiral bevel gear-tooth surface, the following formation process, the equation of meshing, and
the basic gear design information. The trans-

y$ Ym formation process described previously is used to
determine the location of a point on the head cut-
ter in coordinate system S,. Since there are

._.._zS  three unknown quantities (u. 0. and 0c). three
equations relating them must be developed.

Values for u, 0, and 0 are used to satisfy
the equation of meshing given by Refs. ! and 9.

; o i 0 (3)

where - is the normal vector to the cutter and
workpiece surfaces at the specified location of
interest, and V is the relative velocity between
the cutter and workpiece surfaces at the specified
location.

tC Gear design information is then used to
Lefthand member: s TOc establish an allowable range of values of the

radial (F) and axial (E) positions that are known
Yc zC to exist on the gear being generated. This is

shown in Fig. 6.

Ym Y s 0 First the equation of meshing must be satis-
fied. This is given as I]:

(. - rcot cos )cos sin(0 q _ 0,)
q

-+ sf(j.) - siny)costsinO ; cos7sin sin(q -

Zs-hh membe . E(coo7oin + sincoocos( ; q t
Figure 4.-OSenation of cutter cradle. and fixed Coordinate i q - 0

systems. Sc. Ss. and SM respectively. - (0encosn~
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In suwnary the procedur is as follows.
Xa. Xw Known loce ions E and i r4 the active profile

-o xC  are used along with the equat.on of meshing to
Point P determine .unknown parameters u, 0, and 0.. The

parameter va;ues. machine tool -ettings, and gear
design values are used in the coordinate trans-_Zp formation shown earlier to find -. ? radial and

Zm axial positions in the gear fixed ,:nrdinate
system S.. This procedure results in the solu-
tion of three simultaneous nonlinear algetraic
equations that are solved numerically.

ViewA APPLICATION OF SOLUTION TECHNIQUE

An application of the techniques previously
P discussed will now be presented. The component to

be modeled was from the NASA Lewis Spiral Bevel
Gear Test Facility. A photograph of the spiral
bevel gear mesh is shown in Fig. 8. and the design
data for the pinion member are shown in Table i.

View A
Figue 6.-Oientation of gear tc be genenaed with assumed postions
r and z.

The upper and lower signs preceding the 7-
above terms pertain to left and right hand gears
respectively.

The axial position must match the value found 7
from transforming the cutter coordinates S, to
workpiece coordinates S.. Zhis is satisfied by
the following (Fig. 6): % V 14

Z. (4)

Finally the radial location from the work
axis of rotation must be satisfied. This is
accomplishe,. by using the magnitude of the loca-
tion in question in the x, - y. plane (Fig. 6):

-x2 + 2)0.5 (

Now a system of three equations (Eqs. (3, to
(5)) is solved simultaneously for the three para-
meters u, 9. and 0.. for a given gear design with A
a set of machine tool settings. These are non-
linear algebraic equations that can be solved
numerically with cmmercially available mathe- 717
matical subroutines. These equations are then 0-7-117
solved simultaneously for each location of in-
terest along the tooth flank, as shown in Fig. 7. Figure8.-PhotographofNASAspralbevel
From the surface grids, the active profile geartestrigcomponents.
(working depth) occupied by a single tooth is
defined. Surface Coordinate Calculation

Using Figs. 7 and 9 as references, we will
describe the calculation procedure for surface
coordinates. First. the concave side of the tooth

Aung Addendum is completely defined before moving to the convex
ne /side. These points are calculated by starting at

depth- the toe end and at the lowest point of active
profile. Nine steps of equal distance are used
from the beginning of the active profile to the
face angle (addendtam) of the gear tooth, and then

learanc ," back to the next axial position (Fig. 9). The
concave", procedure is repeated until the concave side is
s'idelloPe 1% completely described. Then the same procedure is
SedPndim-nt s  followed for the convex side.10 Points-1 " '

-Oededum Examole Model and Results
Figure 7.-Calculation points (100 each side) for concave and From the one-tooth modeL described earlier

convexsidesoltoothsurface. the analysis techniques can be demonstrated. The
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TABLE 11 XAMPLE CASE FOR SURFACE COORDINATE GENERATION

Gear design-data J-

-Number of teeth (pinion, gear). ............... 12. 36
-Dedendum- angle, 65. deg. ......................
Addendum-angle, deg ..................... 3.883
-Pitch angle. 1p. deg.. ................... 18.433
-Shaft angle. deg .... ................... 90.0
-Mean spiral angle. deg .... ................ 35.0
Face width. mmn. (-in.) .................. 25.4 (1.0)
-Mean cone distance. ar.n (in.) ........... .....05 (3.191)
Inside radius of gear blank. mm (in.)........15.3 (0.6094)
Top land thickness. mm (i;n.) ......... .... 2.032 (0.080)
Clearance min (in. ) 0 . .762 (0.030)

4Generation machine settings

Concave -Convex -

Rudius of cutter. r, mnm (in.) 75.222 (2.9615) 78.1329 (3.0761)
Blade angle. ~.deg 161.358 24.932
Vector sum. La mm. in. 1.0363 (0.0408) -1.4249 (-!i.0561j
-Machine offset. E. =m (in.) 3.9802 (0.1567) -4.4856 (--.. 766
-Cradle to cutter distance.

s. rmn (in.) 74.839 -2.9646) 71.247 (2 3050,
-Cradle angle. q. deg - 64.01 53.a2

X. Surface cocrcnate
%calculation grid

Sm ~-Hel
', -Tcp

Iland

r,:. cone-I
zw

r- oot angle L7 7
5.- dedendurn angle 7
4- addendum angle
r,- inside radius of gCei lank~-

Figure 9 -Crcss section of calculaaion grid.

.724 LlPa (250 kst)
pressure~ loao

normal to gstr

-Fixed surface

x' Fixed surface

Figure 10.-Boundary conditionis for the constant fileolrool radius model for the example application,



model shown in Fig. 10 is that for a constant shown in Fig. 10. A 1724-HPa (250 ksi) constant
fillet and root radius (also called full fillet) pressure load was applied normal to the tooth
model. The fillet and root radius on the convex surface of nine elements, and the two edge sur-
side has been added along with the tooth section fazes of the gear rim had all degrees of freedom
(without the tooth) to make the-model symmetric constrained.
about the tooth centerline. Figure 10 shows a
hidden line plot of the finite element mesh-with The results were calculated by-MSCIfIASTRAN
eight-noded isoperLmetric three-dimensional solid and were subsequently displayed by PATR.AN. F.Ig-
continuum elements. This model has 765 elements ure II shows -the major princ,ple stresses tor the
and 1120 nodes. The boundary conditions are also boundary conditions shown in Fig. 10.

ps MPa

-34000 A -234
-22000 B
-10000 C

2000 D
~ ~~fl ~14000 E

- ~26000 F :79
~iL~*.~38000 G

50000 H
~ 62000 1

744000 J 510
Z. 86000 K

'O'-- 98000 L
T-~i 110000 .1. 759

Figure 11..-Ma,r pdriple stress for te boundary cordizion, speclied in figure 10.
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